Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 49(6): 1241-1255, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870722

RESUMO

The intensive culture of characid teleosts for ornamental trade is highly dependent on live feed organisms, particularly Artemia nauplii, to provide nutrition through the larval stage. Live feeds have inherent disadvantages relative to prepared microparticulate diets (MDs), specifically availability, labor and cost. In this research, the dependence of larval Paracheirodon innesi on live Artemia was confirmed via a nutritional trial. Next, digestive system ontogeny was characterized from the onset of exogenous feeding through metamorphosis. P. innesi exhibited an agastric larval stage, as well as low digestive enzyme activity at the onset of exogenous feeding followed by abrupt increases in trypsin, lipase and pepsin activity. Differentiation of the stomach, including gastric gland formation and production of neutral mucopolysaccharides, as well as the onset of pepsin activity, did not occur until 20 days post hatch (dph; 5.24 ± 0.20 mm). This shift from agastric to gastric digestive modes is indicative of a proliferation of digestive capacity and subsequent prey diversity in other fish species exhibiting similar altricial larval stages.Based on this information, different schedules for weaning from Artemia to a MD were evaluated. For P. innesi fed until 32 dph, weaning beginning at 12 dph and 17 dph resulted in similar survival to live Artemia (mean: 22.0 ± 1.7%), and the MD resulted in the lowest survival (0.8 ± 0.3%). These results indicate that weaning is possible prior to gastric differentiation, potentially resulting in the reduction of Artemia use in the larval culture P. innesi.


Assuntos
Characidae , Animais , Larva , Neônio , Pepsina A , Desmame , Sistema Digestório
2.
Artigo em Inglês | MEDLINE | ID: mdl-37611891

RESUMO

The SREB (Super-conserved Receptors Expressed in Brain) family of orphan G protein-coupled receptors is highly conserved in vertebrates and consists of three members: SREB1 (orphan designation GPR27), SREB2 (GPR85), and SREB3 (GPR173). SREBs are associated with processes ranging from neuronal plasticity to reproductive control. Relatively little is known about similarities across the entire family, or how mammalian gene expression patterns compare to non-mammalian vertebrates. In fish, this system may be particularly complex, as some species have gained a fourth member (SREB3B) while others have lost genes. To better understand the system, the present study aimed to: 1) use qPCR to characterize sreb and related gene expression patterns in the brains of three fish species with different systems, and 2) identify possible differences in transcriptional regulation among the receptors, using upstream transcription factor binding sites across 70 ray-finned fish genomes. Overall, regional patterns of sreb expression were abundant in forebrain-related areas. However, some species-specific patterns were detected, such as abundant expression of receptors in zebrafish (Danio rerio) hypothalamic-containing sections, and divergence between sreb3a and sreb3b in pufferfish (Dichotomyctere nigroviridis). In addition, a gene possibly related to the system (dkk3a) was spatially correlated with the receptors in all three species. Genomic regions upstream of sreb2 and sreb3b, but largely not sreb1 or sreb3a, contained many highly conserved transcription factor binding sites. These results provide novel information about expression differences and transcriptional regulation across fish that may inform future research to better understand these receptors.


Assuntos
Encéfalo , Peixe-Zebra , Animais , Sítios de Ligação , Receptores Acoplados a Proteínas G/genética , Genômica , Fatores de Transcrição/genética , Expressão Gênica , Mamíferos
3.
Sci Rep ; 12(1): 9454, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676522

RESUMO

Phoenixin (PNX) is a highly conserved, novel hormone with diverse functions, including hypothalamic control of reproduction, appetite modulation, and regulation of energy metabolism and inflammation. While some functions appear conserved across vertebrates, additional research is required to fully characterize these complex pleiotropic effects. For instance, very little is known about transcriptome level changes associated with PNX exposure, including responses in the hypothalamic-pituitary-gonadal (HPG) axis, which is critical in vertebrate reproduction. In addition, the PNX system may be especially complex in fish, where an additional receptor is likely present in some species. The purpose of this study was to assess hypothalamic and ovarian transcriptomes after PNX-14 administration in female vitellogenic green-spotted puffer (Dichotomyctere nigroviridis). Steroid-related changes were also assessed in the liver and blood plasma. Hypothalamic responses included pro-inflammatory signals such as interleukin 1ß, possibly related to gut-brain axis functions, as well as suppression of cell proliferation. Ovarian responses were more widely downregulated across all identified pathways, which may reflect progression to a less transcriptionally active state in oocytes. Both organs shared regulation in transforming growth factor-ß and extracellular matrix remodeling (periostin) pathways. Reproductive processes were in general downregulated, but both inhibiting (bone morphogenetic protein 15 and follistatin) and promoting (17-hydroxyprogesterone) factors for oocyte maturation were identified. Select genes involved in reproduction (vitellogenins, estrogen receptors) in the liver were unresponsive to PNX-14 and higher doses may be needed to induce reproductive effects in D. nigroviridis. These results reinforce the complexity of PNX actions in diverse tissues and highlight important roles for this hormone in regulating the immune response, energy metabolism, and cell growth.


Assuntos
Tetraodontiformes , Transcriptoma , Animais , Feminino , Hormônios/metabolismo , Hipotálamo/metabolismo , Esteroides/metabolismo
4.
Sci Rep ; 11(1): 12066, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103644

RESUMO

The SREB (Super-conserved Receptors Expressed in Brain) family of G protein-coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identified, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non-mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fish, using comparative genomics and gonadal expression analyses in five diverse ray-finned (Actinopterygii) species across evolution. Several unique characteristics were identified in fish, including: (1) a novel, fourth euteleost-specific gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression differences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may reflect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in puffer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. These results demonstrate that SREBs may differ among vertebrates in genomic structure and function, and more research is needed to better understand these roles in fish.


Assuntos
Evolução Molecular , Proteínas de Peixes , Peixes , Regulação da Expressão Gênica , Receptores Acoplados a Proteínas G , Animais , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Peixes/classificação , Peixes/genética , Peixes/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Especificidade da Espécie
5.
Artigo em Inglês | MEDLINE | ID: mdl-25475593

RESUMO

Teleost fish exhibit diverse reproductive strategies, and some species are capable of changing sex. The influence of many endocrine factors, such as gonadal steroids and neuropeptides, has been studied in relation to sex change, but comparatively less research has focused on gene expression changes within the brain in temperate grouper species with non-haremic social structures. The purpose of the present study was to investigate gonadotropin releasing hormone (GnRH) and brain aromatase (cyp19a1b) gene expression patterns during reproductive development and sex change in protogynous (female to male) black sea bass (Centropristis striata). Partial cDNA fragments for cyp19a1b and eef1a (a reference gene) were identified, and included with known gnrh2 and gnrh3 sequences in real time quantitative PCR. Elevated cyp19a1b expression was evident in the olfactory bulbs, telencephalon, optic tectum, and hypothalamus/midbrain region during vitellogenic growth, which may indicate changes in the brain related to neurogenesis or sexual behavior. In contrast, gnrh2 and gnrh3 expression levels were largely similar among gonadal states, and all three genes exhibited stable expression during sex change. Although sex change in black sea bass is not associated with dramatic changes in GnRH or cyp19a1b gene expression among brain regions, these genes may mediate processes at other levels, such as within individual hypothalamic nuclei, or through changes in neuron size, that warrant further research.


Assuntos
Aromatase/metabolismo , Bass/fisiologia , Encéfalo/enzimologia , Proteínas de Peixes/metabolismo , Hormônio Liberador de Gonadotropina/análogos & derivados , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Aromatase/genética , Feminino , Proteínas de Peixes/genética , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Processos de Determinação Sexual , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
6.
Clin Cancer Res ; 15(3): 898-906, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19188160

RESUMO

PURPOSE: Among derivatives of alpha-vitamin E, alpha-vitamin E succinate (VES), has attracted much attention due to its potent anti-prostate cancer activity in vitro and in vivo. However, the in vivo antitumor activity of VES might be compromised if administrated orally due to the VES hydrolysis by esterases in the gastrointestinal tract. EXPERIMENTAL DESIGN: New nonhydrolyzable VES ether analogues were synthesized and their growth inhibition was screened by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide growth assay. Among them, RRR-alpha-tocopheryloxybutyl sulfonic acid (VEBSA) was further characterized by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling apoptosis assay, soft agar assay, and in vivo tumor formation. RESULTS: VEBSA has potent antitumor ability, albeit to a lesser extent than VES, in in vitro cultured prostate cancer LNCaP and PC3 cells. Like VES, VEBSA induced apoptosis, repressed androgen receptor protein expression, and enhanced vitamin D receptor expression, suggesting that VEBSA can go through mechanisms similar to those used by VES to inhibit the growth of prostate cancer cells in vitro. However, 6 weeks of oral consumption of VEBSA, but not of VES, reduced the tumor burden in the xenografted prostate tumors in nude mice. Furthermore, oral intake of VEBSA for 20 weeks inhibited prostate tumor growth and progression more efficiently compared with VES in the prostate cancer tumor model of TRAMP mice. CONCLUSION: Oral consumption of VEBSA allows a greater anticancer activity compared with VES. Chemoprevention prefers the oral consumption of agents; the advantage of VEBSA over VES to be administrated orally will allow VEBSA to serve as an agent for both preventive and therapeutic purposes for prostate cancer.


Assuntos
Neoplasias da Próstata/tratamento farmacológico , Vitamina E/análogos & derivados , Administração Oral , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Calcitriol/metabolismo , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/uso terapêutico , Vitamina E/administração & dosagem , Vitamina E/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/síntese química , alfa-Tocoferol/uso terapêutico
7.
Clin Cancer Res ; 13(7): 2271-80, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17404112

RESUMO

PURPOSE: Insulin-like growth factor binding protein-3 (IGFBP-3) is a well-known antiproliferative and proapoptotic molecule in prostate cancer, suggesting that targeting IGFBP-3 might produce clinical benefits. In prostate cancer cells, RRR-alpha-vitamin E succinate (VES) inhibits cell proliferation and induces apoptosis, yet the mechanisms remain to be elucidated. We hypothesize that the protective effects of VES in prostate cancer are mediated by IGFBP-3 up-regulation. Using prostate cancer models, the involvement of IGFBP-3 in the anticancer effect of VES was investigated. EXPERIMENTAL DESIGN: IGFBP-3 mRNA and protein were determined by real-time PCR and Western blotting in prostate cancer cells, xenografted tumors of nude mice, and prostate tumors of transgenic adenocarcinoma mouse prostate (TRAMP) mice. The serum levels of IGFBP-3 were assessed by ELISA. The importance of IGFBP-3 in VES-mediated antitumor effects was confirmed by small interfering RNA knockdown strategy. RESULTS: We found that VES induced IGFBP-3 mRNA and protein levels in human prostate cancer cell lines. Knockdown of IGFBP-3 by small interfering RNA attenuated VES-induced IGFBP-3 expression and VES-mediated antiproliferative and proapoptotic functions. Furthermore, administration of VES resulted in a significant therapeutic effect on LNCaP and PC3 xenografts and a preventive effect on tumorigenic progression in the TRAMP model without overt toxicity. Notably, the therapeutic and preventive efficacy of VES correlated with increased accumulation of IGFBP-3 in mouse serum as well as in the xenograft tumors and TRAMP prostate samples. Consequently, reduced proliferation and induced apoptosis were witnessed. CONCLUSIONS: VES mediates its therapeutic and preventive effects against prostate cancer at least partially through up-regulating IGFBP-3, which inhibits cell proliferation and promotes cell apoptosis.


Assuntos
Antineoplásicos/farmacologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Vitamina E/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , RNA Mensageiro/análise , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tocoferóis , Vitamina E/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...